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Abstract

Carriers and postal companies are under increasing pressure to reduce their operating costs and increase
efficiency. One way to reduce costs is to improve the utilisation of drivers’ working hours by employing
more efficient rest break policies. A rest break policy is a restrictive set of rules consistent with national
regulations for hours of service. We develop and validate a novel framework to model and analyse a class of
these policies that concern the location of the rest breaks. In particular, we compare two representative rest
break policies using data from a major Australian postal carrier. The first policy imposes no restriction
on the location of a rest break. The second policy requires the driver to return to a depot for rest taking
allowing time for socialising and making use of full amenities. Using postal transport data from Sydney
metropolitan area, we find that the difference between the two polices in terms of tour length is just over
1%. We further apply the proposed framework to assess the impact of increasing the minimum break time
on the two representative policies.

1 Introduction

Carriers and postal companies have been under increasing pressure to reduce prices and increase their service
levels, often measured in form of delivery times (PwC (2016), Briest et al. (2019)). They also feel obligated to
their customers and the next generations to reduce their carbon footprint 1 through innovation and undertaking
sustainable initiatives (Fahimnia et al. (2015)). One approach to tackle this pressure is to become more
productive and cost-efficient through efficient planning and optimisation of pickup and delivery operations
(Briest et al. (2019)). The primary service of carriers is to collect customer products (mail or parcels) and
deliver them to given destinations/customers. If shipping volume is much less than a truckload, direct shipping
may be too cost inefficient; in which case, the products destined to the same region are consolidated to utilise
the economies of scale.

Large carriers have multiple consolidation centres allowing them to coordinate the product flow between
these centres and between the centres and the customers, in order to reduce costs and maintain/improve service
levels. An effective robust scheduling is essential to plan the resourcing and timing of the pickup and delivery
jobs. This is a challenging problem, the classic form of which is known as Pickup and Delivery Problem with
Time Windows, commonly referred to as PDPTW (Ropke and Cordeau (2009); Dumas et al. (1991)).

A missing element in a PDPTW problem is the planning of the rest breaks. Most countries have certain
rest break regulations for truck drivers. Australia (NHVR (2020)), Canada (Justice Laws (2020)), European
Union (EU) countries (Europa 1 (2020); Europa 2 (2020)), and the US (Federal Register (2020)) have applied
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strict rest break regulations to reduce the risk of accidents due to prolonged hours of work with insufficient rest.
The rest break regulations in Australia are quite unique with less structural resemblance to what is practised
in the rest of the world. There are multiple regulatory frameworks for rest breaks, but the most commonly
used framework is based on the standard hours regulations for solo truck drivers. We refer to this as SH
framework/rules23.The regulations apply to heavy vehicles with Gross Mass larger than 4.5 tonnes, excluding
rolling stocks such as trains. Our focus in this paper is on planning for short Hours of Service (HOS) (i.e., less
than 13 hours service per day) for heavy truck drivers which is applicable to carrier operations in major cities
and many regional areas. We interchangeably use the terms ’heavy truck’ or ’truck’ in the paper. According to
the SH framework, for the short HOS, each truck driver cannot work continuously more than 5:15, 7:30, and
10 hours without taking break(s) of at least 15, 30 and 60 minutes, respectively (in 15-minute resting blocks).

Truck drivers in cities and regional areas complete multiple pickup and delivery jobs in every shift. Finding
an optimal schedule with respect to pickup and delivery time windows while also considering the SH rules is
a formidable challenge. The existing methodologies either lack the flexibility to easily accommodate carrier
specific preferences or fail to utilise the full flexibility provided by the SH rules. As a result, the real applications
of these methodologies are rather limited, especially when it comes to planning for the short HOS.

To illustrate the cost implications of break rules, we introduce the following example.

Example 1. There are three customers to be visited by a truck driver for daily product collection. The
collected products are delivered to the depot. Service time at each stop is 20 minutes. Customers 1, 2, and 3
have to be visited within time windows [100, 260], [0, 1440], and [100, 420], respectively; where [a, b] denotes the
time window with earliest start time a and latest start time b for the visit. Times a and b are measured in
minutes passed from 6:00 AM. The distance matrix (in minutes) between customer locations and the depot
(with index 0) is as follows:

D =


0 96 112 136
96 0 120 144
112 120 0 232
136 144 232 0


Without breaks, the optimal sequence of visits is 0-2-1-3-0 with a total duration of 592 minutes. When breaks
are taken into consideration, this sequence is not feasible anymore. The reason is that it takes 416 minutes for
a truck to get to Customer 3 and since according to the SH rules, a break of 15 minutes is required before
servicing Customer 3, the truck can only start servicing Customer 3 at 431 minutes at earliest, which is outside
the acceptable time window for Customer 3. Under the SH framework, an optimal tour is 0-1-3-2-0 with a
duration of 724 minutes with two 30-minute breaks at Customer 2 and Customer 3. So, if the break times are
excluded, the work time is increased from 592 minutes to 663 minutes from the first optimal sequence to the
second optimal sequence. This is a significant increase of 12% in the total work time.

Our research was motivated by an optimisation/scheduling problem facing a major postal carrier in Australia.
Typical daily operations of the proposed company are as follows. Mail and parcels are picked up from collection
facilities and bulk customers. They are then shipped to middle sortation facilities and subsequently to delivery
centres. From delivery centres, they are carried to destination points. The shipping between bulk customers
and facilities is mainly handled by trucks. The aim is to maximise the truck utilisation. We study this problem
for a single vehicle and a single driver operating under the Australian the HOS regulations. We are given a
set of pickup and delivery jobs where each job requires some parcels to be picked up from one location and
delivered to another location. The pickup as well as the delivery should be done within pre-specified time
windows. Consistent with practice, demand is measured in cubic meters. For heavy items, more space is
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allocated in the truck to keep the load balance of the truck. Therefore, weight can be translated into cubic
meters. We aim to schedule all jobs in a single tour while respecting the SH break rules.

The SH rules do not require the drivers to return to the depot for taking breaks. However, some logistic
providers, including the postal company that motivated this study, schedule the tours in a way that the drivers
end up taking their breaks in the depot which is fully equipped for rest taking and also allows the drivers to
socialise. In our analysis, we provide a cost comparison of the two policies.

The problem will be formulated using Mixed-Integer Programming (MIP) which is known to be a suitable
methodology for tactical and operational decision-making problems in logistics and supply chain management.
This is evidenced by numerous commercial solvers and academic papers published on both MIP theory and
applications (Dong et al. (2020); Zhen et al. (2020); Li et al. (2020); Schiffer et al. (2019)). We develop an
exact MIP model to solve a single-vehicle PDPTW under the SH rules. We model the problem under the
SH rules with (scenario 1) and without (scenario 1) restriction for break location. A “unified” methodology
will then be developed to compare the two scenarios in terms of the tour length. We refer to this as a unified
approach/methodology since both scenarios are modelled in the same fashion. Finally, we use the models and
the methodology on a real dataset provided by a major postal carrier.

The scheduling of rest breaks given a sequence of tasks for a single truck and a single driver is referred to
as Truck Driver Scheduling Problem (TDSP). Our contribution to the literature of the TDSP is threefold. (1)
We pioneer the development of an MIP model that allows for a flexible break location (i.e., a break may take
place between tasks at any location, not just at the depot). The model is tractable by existing commercial
optimisation packages. MIP models are much easier to apply or extend compared to other exact approaches
such as dynamic programming which require customisation and is more time-consuming to implement. For
dynamic programming, no generic solver exists in the market; while there are numerous commercial and
open-source packages to solve MIP models. (2) We develop a unified methodology for modelling various
restrictions on break locations. (3) We use real data to validate the proposed model and methodology and
compare representative rest break policies.

The rest of the paper is organised as follows. Section 2 presents a review of the literature on rest break
optimisation under the HOS constraints and related policies. A formal description of the problem under
investigation is presented in Section 3. Section 4 presents a set of necessary and sufficient conditions for tour
feasibility under the SH rules. These conditions will then enable us to develop an exact MIP model that can
be customised to formulate and evaluate different policies. Section 5 compares the impact of two rest break
scenarios on a real dataset obtained from a major postal carrier in Australia. We also estimate the price of
each scenario compared to a situation with no rest break. Finally, Section 6 presents a summary of the key
findings as well as directions for future work in this domain.

2 Literature review

There are two streams of research relevant to this study. The first stream considers the HOS regulations in
scheduling of truck deliveries in given time windows. The classic problem in this stream is the TDSP. In the
TDSP problem, there is a single vehicle, and the sequence of tasks is given. Therefore, the sequence, which
affects the total driving times, is not a decision variable. In this stream of research, there are also problems in
which the TDSP is integrated with Vehicle Routing Problem (VRP). The focus is more on developing solution
methods or ideas to help improve operational scheduling/planning. The second stream of research, on the
other hand, aims to study the TDSP or its variants from tactical planning and/or policymaking perspectives.

Our review of the first stream of literature starts by the work of Xu et al. (2003), the first study to integrate
the TDSP with Pickup and Delivery Problem under the HOS regulations in the US. A column generation
based heuristic algorithm is presented as a solution method. Archetti and Savelsbergh (2009) study the TDSP
under the US HOS regulations and propose a polynomial time algorithm that either finds a feasible solution
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for the problem with minimum total rest time or establishes infeasibility. In their setting, time windows are
only defined for pickup tasks.

Goel (2009) and Ceselli et al. (2009) were the first to study the TDSP under the EU HOS regulations. Both
papers solve the TDSP integrated with routing decisions using heuristic algorithms. The problem setting in
Ceselli et al. (2009) was used in a decision support system of a transport company in Italy. Similar to our
setting, they consider a short less-than-one-day time horizon. Goel (2010) develops the first exact algorithm
for the TDSP under the EU regulations. Kok et al. (2010) and Prescott-Gagnon et al. (2010) develop heuristic
algorithms for the integrated TDSP with routing under the EU HOS regulations.

Goel (2012b) is the closest paper to our work and the first study that suggests an MIP model for the TDSP
under the Australian HOS regulations. Our work differs from the work of Goel in four dimensions. (1) We relax
the assumption that the sequence of tasks is known; therefore, we also incorporate routing decisions into our
model. (2) We schedule tasks for a single tour for short HOS (less than 13 hours). In our application in Sydney
Metropolitan area, the maximum shift time for drivers is 12 hours which seems to be a standard characteristic
of city transportation jobs around the globe. In Goel’s model the focus is on a longer time horizon over one
week which usually applies to intercity transport. (3) Our primary aim is to develop a framework for evaluation
of the HOS regulations in practice, not a methodology for generating schedules. Nevertheless, we show that the
MIP models presented in this paper perform very well on real data and, in most instances, generate optimal
tours in less than one minute. (4) We also relax some of the other assumptions that may not replicate the
reality. Specifically, Goel (2012b) assumes that rest breaks can only be taken immediately after arrival at
a location and before starting to work at that location. It also assumes all time values are multiples of 15
minutes. These two critical assumptions make the resulting models too restrictive when compared to real
scenarios. In our study, we relax these two restrictions.

In another study, Goel et al. (2012) investigate the TDSP under the Australian HOS regulations using
a dynamic programming approach. An exact dynamic programming algorithm and a set of heuristics are
presented to find a feasible solution. If no feasible solution exists, the algorithm reports infeasibility. Although
they do not restrict the resting locations, all time values are multiples of 15 minutes. In the same year,
Goel (2012a) introduces a generic MIP and dynamic programming approach for solving the TDSP under
the EU and US regulations. The MIP model imposes restriction on rest break locations, but the dynamic
programming relaxes this assumption. Goel and Rousseau (2012) introduce an approach for solving the TDSP
under Canadian regulations. It presents an exact algorithm for either finding a feasible solution or proving
infeasibility. Sartori et al. (2021) consider TDSP problem under the EU HOS regulations. They assume there
is a precedence relationship between tasks. They also assume that the tasks in each tour are predetermined.
The study proposes an algorithm with exponential worst-case runtime which finds a feasible task schedule for
each tour.

The second stream of research is not as mature and established. Goel and Vidal (2014) propose a
metaheuristic to compare the HOS regulations in EU, Canada, Australia and the US in terms of accident risk
and operating costs, considering total distance and fleet sizes. They compare these regulations on instances
with 100 customers for a planning horizon of 144 hours. The average time window in their study is 7 hours
which is quite large compared to urban services where the average time window is less than an hour. For express
post, the time windows are even shorter. They use a modified version of the heuristic algorithm introduced by
Goel et al. (2012) for assessing compliance with the Australian regulations. The original algorithm assumes
all time values are multiples of 15 minutes which restricts the application of this approach. This assumption
is rather relaxed in the modified algorithm. However, in the solutions generated by the modified algorithm,
the start and end times of all off-duty periods are still in multiples of 15 minutes. This leads to allocation of
redundant times to a tour which is particularly not desirable for the short HOS in which 15 minutes can be
allocated to a stand-alone piece of work. Our model is free of this restriction.

Goel (2014) assesses the impact of the new HOS regulations in the US (changed in 2013) on the operating
costs of transport companies using a simulation-based methodology, initially proposed by Goel and Vidal
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Table 1: Summary of Studies on Truck Driver Scheduling Problem

Article Year Problem
HOS Regulations

AUS CAN EU US
Xu et al. (2003) 2003 TDSP+Routing X
Archetti and Savelsbergh (2009) 2009 TDSP X
Goel (2009) 2009 TDSP+Routing X
Ceselli et al. (2009) 2009 TDSP+Routing X
Goel (2010) 2010 TDSP X
Kok et al. (2010),
Prescott-Gagnon et al. (2010)

2010 TDSP+Routing X

Goel (2012b), Goel et al. (2012) 2012 TDSP X
Goel (2012a) 2012 TDSP X X
Goel and Rousseau (2012) 2012 TDSP X
Rancourt et al. (2013) 2013 TDSP+Routing X
Goel (2014) 2014 TDSP+Routing X
Goel and Vidal (2014) 2014 TDSP+Routing X X X X
Koç et al. (2016) 2016 TDSP X
Goel and Irnich (2017) 2017 TDSP+Routing X X
Koç et al. (2017) 2017 TDSP+Routing X
Tilk and Goel (2020) 2020 TDSP+Routing X X
Sartori et al. (2021) 2021 TDSP+Routing X

(2014). The study uses monetised accident risk, and time-based and distance-based costs as performance
metrics. In another study, Koç et al. (2017) investigates the TDSP with a rich objective function that takes
into account the cost of engine idling. The authors develop an MIP model considering the HOS regulations in
the US to assess the impact of engine idling and its policy implications.

Indeed, the second stream of research focuses primarily on operating and safety measures in analysing the
HOS regulations. Research in this area overlooks the implementation challenges and the direction/intensity of
the impacts of such regulations. It is our intention in this paper to explore this topic from the perspective of
rest break location. In addition, previous studies have often developed hard-to-use, relatively inflexible, and
highly specialised methodologies to tackle the related problems. It is not possible to conveniently accommodate
various criteria or preferences in such complex models. We will address this issue by developing a simple and
highly flexible MIP-based methodology which is particularly useful in real world situations where rapid decision
making is essential. Table 1 provides a comprehensive summary of studies on the TDSP and its variants.

3 Problem Description

We are given a set of tasks Q = {0, · · · , 2n + 1}. Task i ∈ Q has earliest start time tei , latest start time tli,
location li, pickup quantity qi, and service time si. At each location l, there is a fixed preparation time prior
to the commencement of the service, denoted by s1l . After the completion of the service, there is a fixed
preparation time denoted by s2l . Preparation times could account for activities such as parking and unparking
or loading and unloading. Since multiple tasks could be scheduled consecutively at one location, the preparation
times cannot be incorporated into the task service time; hence, we define them separately. For each pickup
task i there is an associated delivery task n+ i. Let set P = {1, · · · , n} and set D = {n+ 1, · · · , 2n} be the set
of pickup and the set of delivery tasks, respectively. Let also tasks 0 and 2n+ 1 denote the start and the finish
task at the depot with zero pickup quantities, respectively. We define a job as a pair of a pickup and a delivery
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tasks. For i ∈ P , job (i, n+ i) is to pick up quantity qi from location li and deliver it to location ln+i. Let set
O = {(i, n+ i) : i ∈ P} be the set of all jobs. Since qi by definition refers to pickup quantity, we denote the
pickup quantity of a delivery task n+ i by the negative of qi, i.e., qn+i = −qi. A tour is defined as a sequence
of all tasks where task i ∈ Q starts at time xsi . Each tour is serviced by a truck with capacity c. We denote the
maximum tour time by tmax. The time distance between locations of task i and task j is denoted by dij . The
problem is to find a minimum length tour such that all pickup and delivery tasks are serviced within their time
windows and the HOS regulations are respected. Without considering the HOS regulations, this is a classic
vehicle routing problem with pickup and delivery time windows.

3.1 Break time

There are three established regulatory frameworks in Australia including Standard Hours (SH), Basic Fatigue
Management (BFM), and Advanced Fatigue Management (AFM). These frameworks are structurally identical.
In this paper, we merely focus on the SH regulations which is the most broadly adopted framework in industry.
The BFM and AFM regulations allow for longer hours of work, but are only applicable to accredited transport
operators. In any case, within cities and regional areas, the working hours are often limited to maximum 12
hours. Considering the short trips and the short HOS, we do not need to incorporate restrictions on night
shifts as well as the rules requiring drivers to take long rest breaks out of the vehicle or inside the vehicle in
certain conditions 4. Such rules and restrictions are usually taken into account by planners/schedulers for
rostering and task assignment purposes. We consider this outside the scope of our analysis.

According to the SH rules, the minimum break is 15 minutes with no restriction on the location of the
break. There are however Australian carriers who prefer the breaks to be taken at the depot, if possible. We
are interested to know how this alternative practice compares financially to the the standard SH rules. Since
the length of a tour is the primary cost driver for that tour, we compare these alternative policies using the
length of the tours as the primary measure. We specifically compare two policies: policy Standard Hours (SH)
and policy Standard Hours at Depot (SHD). In the SH policy, all breaks are scheduled according to the SH
rules. In the SHD policy, the breaks are still scheduled according to the SH rules taking into account an extra
restriction that all breaks need to be scheduled at the depot. This restriction of the SHD policy may incur a
significant cost as illustrated in the following examples.

Example 2. We have 3 customers with some parcels for collection. All parcels need to be transported to the
depot. Service duration is 20 minutes at each location irrespective of the number of parcels loaded or unloaded.
We set the index of the depot to 0. The distance matrix in minutes is equal to:

D =


0 90 90 120
90 0 10 60
90 10 0 50
120 60 50 0


We assume that the truck allocated to service the customers has enough capacity to complete all tasks without
the need to go back to the depot in the middle of the tour. For the SH policy, an optimal tour is 0−1−2−3−0
with a duration of 365 minutes and a 15-minute break at customer 3 location. However, an optimal tour for
the SHD policy would be 0− 3− 2− 0− 1− 0 with a duration of 570 minutes and a break of 30 minutes at the
depot given that the truck must visit the depot to take a break in the middle of the tour. Not only SHD policy
caused a significant increase in tour duration, but it also affected the order of the visits. The SHD policy made
the tour long enough to need a 30-minute break, instead of 15 minutes as required by the SH rules. We note
that since the break location is not restricted in the SH policy, the only way that the SH policy could change

4https://www.nhvr.gov.au/safety-accreditation-compliance/fatigue-management/work-and-rest-requirements/

standard-hours
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the optimal sequence of visits to customers is when strict time windows are applied. In order to ensure that a
sequence is compliant with the SH policy, we just need to schedule the breaks at appropriate times. Adding
breaks does not require us to change the sequence, nor does it increase the total tour length excluding the
total break time.

Example 3. Consider the data in Example 2 with the following distance matrix:

D =


0 96 112 136
96 0 120 144
112 120 0 232
136 144 232 0


Customer 3 has to be visited within time window [100, 420] and Customer 1 has to visited within time window
[100, 260]. If we ignore both policies, optimal tour is 0− 2− 1− 3− 0 with a duration of 592 minutes. Under
the SH policy, this tour is not feasible as it would take 416 minutes for the truck to get to Customer 3 without
break and since a break of 15 minutes is required before getting to Customer 3, the truck could not start
servicing Customer 3 before 431 min – which is obviously outside the acceptable timeframe. Under the SH
policy, an optimal tour is 0− 1− 3− 2− 0 with a duration of 724 minutes, a 30-minute break at Customer 3,
and a 30-minute break at Customer 2.

The SHD policy has two main advantages over the SH policy. First, it is more convenient for the drivers
since they can socialise with other drivers and use the amenities available at the depot. Second, it is easier to
plan for compliance with the HOS regulations using the SHD policy as the choices are less compared to the SH
policy. However, the associated logistics cost could be excessively high; hence a thorough cost/benefit analysis
is essential.

In all these policies, we assume that the break times cannot happen during service times. This is consistent
with the current postal service practice, since a service at a pickup and delivery location cannot be interrupted
by a break. There are however certain activities that could be interrupted by a break (e.g., driving times).
Regardless of the rest break policy, we assume in all our models and experiments that service times at the
pickup and delivery locations cannot be interrupted.

4 The Models

In this section, we present an MIP model for each policy. Before that, we prove an important theorem which
gives us both necessary and sufficient conditions for compliance of a given tour. We can think of a tour as a
sequence of two types of periods. We call them flexible and inflexible periods. A flexible period has two features.
First, it can be all work time or all break time. Second, if it is a mixed work-break period, the break(s) can
start at any time during the period. In contrast, an inflexible period has no break and consists of a sequence
of work blocks that satisfy two conditions: (a) none of the work blocks was allowed to be interrupted with a
break, and (b) no break was allowed to be scheduled between the work blocks. In general,in any given tour, we
first find inflexible periods. The time period between any two consecutive inflexible period is a flexible period.
These concepts simplify our analysis as we can equally treat the contents of inflexible periods, and can consider
every inflexible period as a single solid work block. Later in this section, we prove Theorem 1 that tells us,
for a given tour, if there are enough break blocks inside flexible periods, then there exists at least a feasible
solution with respect to the SH rules. A feasible schedule can be found by shifting break blocks inside the
flexible periods. This shifting of break blocks does not change the length of the tour or the schedule of tasks.
Since our objective is to find the optimal tour duration, we do not mind how the breaks are exactly scheduled.

Let [n] = {1, · · · , n}. For inflexible period i, we denote its start time and end time by si and fi , respectively.
We denote a tour with n inflexible periods i by {(si, fi)}[n] where fi 6 si+1 for all i ∈ [n− 1]. All the periods
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between consecutive inflexible periods are flexible periods. We assume that the period ending at s1, and the
period starting after fn are rest breaks. An SH-type break rule can be defined by a positive and real parameter
a and two positive integers b and δ. We refer to an SH-type rule by triple (a, b, δ). In any period of length a
minutes, there should be at least b break blocks of length δ minutes each. For example, for the first SH break
rule a = 330, b = 1, and δ = 15. We first prove a general theorem for a single SH-type rule which sets necessary
conditions for feasibility of a given tour {(si, fi)}[n]. Consider tour {(si, fi)}[n], and SH-type rule (a, b, δ) with
bi breaks in flexible period [fi, si+1] for all i ∈ [n− 1].

Lemma 1. If there exists an SH-feasible schedule of breaks with bi breaks in each flexible period i then for all
i, j ∈ [n] where i 6 j, and for all r ∈ {0, · · · , b− 1}, we have

∑j−1
k=i bk > b− r if

fj − si > a− (2 + r)δ. (1)

Proof. For i, j ∈ [n] and r ∈ {0, · · · , b − 1}, consider interval [si − δ + ε/2, fj + (r + 1)δ − ε/2] for a small
positive and real valued number ε. Note that this interval contains interval [si, fj ] for small ε. If condition
1 holds, then the length of the interval is bigger than a− ε. For sufficiently small ε, the length of interval is
equal to or greater than a. Therefore, it requires at least b break blocks according to the SH rules. Since ε
is a positive number, at most r break blocks can be placed outside of interval [si, fj ] and inside of interval
[si − δ + ε/2, fj + (r + 1)δ − ε/2]. It follows that at least b − r break blocks should be inside the interval
[si, fj ].

If the times and parameters are all integers then condition 1 boils down to

fj − si > a− (2 + r)δ + 1. (2)

Now, consider three SH rules (330, 1, 15), (480, 2, 15), and (660, 4, 15). We assume that the length of the
tour, i.e., fn − s1, does not exceed 13 hours or equivalently 780 minutes. We further assume all times are
integer values.

Theorem 1. There exists an SH-feasible schedule of breaks if and only if for all i, j ∈ [n], i 6 j, we have:

1. if fj − si > 301, then
∑j−1

l=i bi > 1,

2. if fj − si > 451, then
∑j−1

l=i bi > 2,

3. if fj − si > 616, then
∑j−1

l=i bi > 3,

4. if fj − si > 631, then
∑j−1

l=i bi > 4.

Furthermore, this feasible schedule can be obtained by just scheduling bi break block(s) within flexible period
[fi, si+1] comprised of biδ break time and si+1− biδ− fi combined preemptive work time and idle time for every
i ∈ [n− 1].

Proof. Refer to Appendix A.

Given the objective of tour length minimisation, the immediate consequence of the above theorem is that it
allows us to explicitly schedule jobs without the need to schedule breaks. Therefore, in the first stage, we find
an optimal schedule of jobs. Then, in the second stage, we can find an explicit schedule of breaks without
affecting the optimality or the scheduled start time of the jobs.

Under both policies, all tours should start and end at the depot. We denote the start location and the
end location of a tour by 0 and n+ 1, respectively. Since there is only one depot, the start and end locations
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are identical. Let us define some notations (refer to Table 2 for primary notations and all notations not
defined within the text). We denote the set of all possible pairs of consecutive tasks by H which is defined
as {(i, j) : i ∈ P ∪ D ∪ {0}, j ∈ P ∪ D ∪ {2n + 1}}. In real applications, some of these pairs might not be
acceptable due to operational, regulatory, or contractual requirements. Let A ⊆ H be the set of acceptable
pairs. The objective function is to minimise the length of the tour; that is,

minxs2n+1 − xs0. (3)

Table 2: Notations

Symbol Definition

[n] {1, · · · , n}, n is a positive integer

Q set of all tasks, i.e., {1, · · · , 2n+ 1}
P set of pickup tasks, i.e., {1, · · · , n}
D set of delivery tasks, i.e., {n+ 1, · · · , 2n}
O set of all jobs (i, n + i) where i is a pickup task and n + i is a

delivery task
H set of all possible pairs of consecutive tasks, or equivalently {(i, j) :

i ∈ P ∪D ∪ {0}, j ∈ P ∪D ∪ {2n+ 1}}
A a given subset of H
B {15k : k ∈ [kmax]}

kmax the maximum number of break blocks required between any two
consecutive tasks under the SH rules

tmax maximum tour time, a number less than 780 minute or 13 hours
li location of task i
tei , t

l
i earliest start time and latest start time of task i

si service time specific to task i
s1l preparation time specific to location l before service starts
s2l preparation time specific to location l after service ends
qi quantity of task i for collection (if task i is delivery, qi is negative)
dij distance in time between location of task i and j
c capacity of a truck

xij value 1 indicates task j is immediately after task i
xsi service start time for task i
xBi accumulated break time by the start time of task i
xci vehicle’s available capacity at the start time of task i
ybij value 1 indicates that there should be b minutes break between

finish time of task i and start time of task j
xbij value 1 indicates there is b minutes break between finish time of

task i and start time of next task j

All the given tasks must be completed in a single tour. To make sure we have a sequence of tasks in
the solution, each task i ∈ P ∪D can be succeeded and preceded by only one task. Let us name the set of
constraints for modelling of this requirement as “service constraints”.
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Service constraints: ∑
(i,j)∈A

xij = 1 for all i ∈ P ∪D ∪ {0}, (4)

∑
(j,i)∈A

xji = 1 for all i ∈ P ∪D ∪ {2n+ 1}, (5)

The capacity of a truck is c cubic meters. After each collection i, the available capacity drops by qi; and
after each delivery j, the available capacity is increased by −qj .
Capacity constraints:

xcj 6 xci − qi +M(1− xij) for all (i, j) ∈ A, (6)

0 6 xci 6 c for all i ∈ P ∪D ∪ {2n+ 1}, (7)

xc0 = c. (8)

M is a number bigger than c. Constraint 6 ensures that the available capacity of the truck at the start of
servicing task j is not more than the available capacity at the end of the immediate preceding task i, that is,
xci − qi.
Time constraints:

tei 6 xsi 6 tli for all i ∈ P ∪D ∪ {0, 2n+ 1}, (9)

xs2n+1 + s2n+1 + s1l2n+1
− (xs0 + s2l0) 6 tmax. (10)

Constraints 9 ensures that the time window for each collection or delivery is respected. Constraint 10
ensures that the length of the tour does not exceed the maximum tour length tmax.

The following sub-sections present the constraints specific to each policy. The break constraints are the
direct consequence of Theorem 1.

4.1 The SH policy

If we look at each pair of tasks (i, j) in A\O, there are four possibilities in a feasible solution.

1. Task j is the next task after i,

2. Task i is the next task after j,

3. Task j is not the next task after i but succeed task i,

4. Task i is not the next task after j but succeed task j.

For jobs (i, j) ∈ O, the order is predetermined. The order of all other tasks is decided by the model. We name
the constraints for the modelling of this requirement as “precedence constraints”. Let set B = {15k : k ∈ [kmax]},
where kmax is the maximum number of break blocks required between tasks i and j in any feasible solution
with respect to the SH rules. Following Theorem 1 and knowing that tasks i and j are consecutive tasks, it is
obvious that the maximum number of breaks is 4.

Let sij denote the total service time and preparation time between the start of task i and the start of
next task j. The total service time at each location is the total service time of consecutive tasks done at the
location plus the total preparation time. The preparation time before the first task at a location can include
vehicle parking and any other preparation that is needed for collection/delivery. The preparation time after
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the last task at a location can include any activity that is needed prior to departure including packing up and
unparking.

sij =

{
si if li = lj ,

si + s2li + s1lj otherwise.

Precedence constraints:

xsi + sij + dij +
∑
b∈B

bxbij 6 xsj +M(1− xij) for all (i, j) ∈ A\O, (11)

xsi + si,n+i + di,n+i +
∑
b∈B

bxbi,n+i 6 xsn+i for all (i, n+ i) ∈ O. (12)

M denotes a sufficiently big number. For precedence constraint, M > T is sufficient. Consider pair of tasks
(i, j) ∈ A\O. Constraint 11 enforces possibilities 1 or 2 by the value of binary variable xij . If i and j are not
consecutive, then Constraint 11 becomes inactive for (i, j). However, by service constraints there is a set of
tasks that come between i and j. Constraint 11 indirectly enforces possibilities 3 and 4 in this case for (i, j) by
directly enforcing possibilities 1 and 2 on all pairs of consecutive tasks from i to j. For (i, j) ∈ O, Constraint
12 imposes that task j should succeed task i because it is a delivery task. For job (i, j) only possibilities 1 and
3 can happen in a feasible solution. The other two possibilities are ruled out by Constraint 12. These two
possibilities are enforced by combining the service constraint and the precedence constraints.

We assume that the drivers cannot take a break once the preparation time starts in a location until the
after-task preparation ends. This assumption is in line with our postal service application (and with general
logistics practice for short service times) and is consistent with the previous literature in this domain (e.g.,
Goel et al. (2012); Goel (2012b)). This is an inflexible period in terms of Theorem 1. However, drivers are free
to take a break at any other times.
Break constraints:
By leveraging the theorem, we can model the SH rules as follows:

xBj 6 xBi +
∑
b∈B

bxbij +M(1− xij), for all (i, j) ∈ A, (13)

(xsj + sj + s2lj )− (xsi − s1li) 6

300 + 150y15ij +315y30ij + 330y45ij + (tmax − 300)y60ij , for all (i, j) ∈ H (14)

xBj − xBi >
∑
b∈B

bybij −M(1−
∑
b

ybij), for all (i, j) ∈ H (15)∑
b

ybij 6 1 for all (i, j) ∈ H (16)

xbij 6 xij for all (i, j) ∈ A, b ∈ B, (17)∑
b∈B

xbij 6 1 for all (i, j) ∈ A. (18)

Constraint 13 ensures that the total break time by the start of task j does not exceed the total break time by
the start of the previous task i plus the total break taken between task i and j; that is,

∑
b∈B bx

b
ij +M(1− xij).

Constraints 14 and 16 are the direct result of Theorem 1 and indicate the length of all intervals starting and
ending with inflexible periods by variables ybij . For every (i, j) ∈ H, the length of interval [xsi − s1li , x

s
j + sj + s2lj ]

is either less than 302, or in [302, 452], or in [453, 617], or in [618, 632], or in [633, tmax], which by Theorem
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1 requires 0, 15, 30, 45, 60 minutes break respectively. The minimum break time in intervals [fi, si+1] is
enforced by Constraint 15. Constraint 17 ensures that xbij takes value zero when task j does not succeed task
i. Constraint 18 imposes that at most only one break variable for each pair of consecutive tasks can take a
non-zero value. For example, if we have a 45-minute break, there are two possibilities without Constraint 18:
x15ij = 1, x30ij = 1 or x45ij = 1. But the first possibility is not consistent with the definition of variables xbij .

Remark 1. There are scenarios in which multiple short tasks are scheduled to be done consecutively at the
same location. In these scenarios, scheduling a break between these short tasks may not be desirable due to
service disruption. To prevent this, we replace constraints 13 with the following constraints:

xBj 6 xBi +
∑
b∈B

bxbij +M(1− xij), for all (i, j) ∈ A, if li 6= lj or tii + si > tlj (19)

xBj 6 xBi +M(1− xij) for all (i, j) ∈ A, if li = lj and tii + si 6 tlj , (20)

If task i and j are at the same location and can be done back-to-back, constraint 20 ensures that scheduling a
break between i and j is disallowed.

It may be of interest to some readers to know how we can deal with this problem when breaks can be
scheduled at any time and at any location. Under the SH policy, we have the flexibility of any break location,
but not the flexibility of any break time. For simplicity, assume that the preparation times are zero. Under
”any time and any location” scenario, for each task the time window should be defined for the whole service
time, and the service time should be contained in the time window. In addition to the task start time variable,
we need to define a task end time variable. We also need to define additional variables for breaks happening
within tasks and between tasks at the same location.

Remark 2. Goel (2012b) assumed that breaks can only take place at customer locations before the service
starts. This restriction can be modelled by a slight modification to the model for the SH policy. Constraint 14
will change to:

(xsj + sj + s2lj +
∑

(j,k)∈H

djkxjk)− (xsi − s1li) 6

300 + 150y15ij +315y30ij + 330y45ij + (tmax − 300)y60ij , for all (i, j) ∈ H (21)

This constraint for each (i, j) corresponds to the interval

[xsi − s1li , x
s
j + sj + s2lj +

∑
(j,k)∈H

djkxjk)]

which contains the inflexible interval [xsi − s1li , x
s
i + si + s2li ] at the start and the inflexible interval

[xsj − s1lj , x
s
j + sj + s2lj +

∑
(j,k)∈H

djkxjk)]

at the end.The latter interval contains service period at location j and the subsequent travel period. Since no
break can take place after the service j or while travelling, Constraint 21 immediately follows from Theorem 1.

4.2 The SHD policy

Under the SHD policy, breaks can only occur at a depot. In a situation with only one depot, if there needs to
be a break between two consecutive tasks, the driver should go to the depot, take the break, and continue
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the tour. The model for the SH policy needs two major changes in the precedence constraints and the break
constraints.
Precedence constraints:

xsi + sij + dij(1−
∑
b

xbij) + (di0 + d0j)
∑
b

xbij +
∑
b∈B

bxbij 6 xsj +M(1− xij) for all (i, j) ∈ A. (22)

If we have a break between task i and task j, the driver needs to drive from location li to depot, take break,
and then drive to location lj . The total driving time between task i and j is (di0 + d0j).
Break constraints:
In this setting, the inflexible intervals either commence at the start of a preparation or at the departure from
the depot after taking a break. Moreover, they end either at the end of an after-task preparation or on arrival
at the depot before the break.

xBj 6 xBi +
∑
b∈B

bxbij +M(1− xij), for all (i, j) ∈ A, (23)

(xsj + dj0(
∑

k:(j,k)∈A,
b∈B

xbjk) + sj + s2lj )− (xsi − d0i(
∑

i:(k,i)∈A,
b∈B

xbki)− s1li) 6

300 + 150y15ij +315y30ij + 330y45ij + (tmax − 300)y60ij , for all (i, j) ∈ H (24)

xBj − xBi >
∑
b∈B

bybij −M(1−
∑
b

ybij), for all (i, j) ∈ H (25)∑
b

ybij 6 1 for all (i, j) ∈ H (26)

xbij 6 xij for all (i, j) ∈ A, b ∈ B, (27)∑
b∈B

xbij 6 1 for all (i, j) ∈ A. (28)

Note that the inflexible intervals might have a different structure compared to the those of the SH policy.
The inflexible interval for (i, j) has this structure:xsi − d0i( ∑

i:(k,i)∈A,
b∈B

xbki)− s1li , x
s
j + dj0(

∑
k:(j,k)∈A,

b∈B

xbjk) + sj + s2lj


If there is no break between task i and its previous task, and there is no break between task j and its next

task, then the interval has the same structure as the corresponding interval in the SH policy; that is,[
xsi − s1li , x

s
j + sj + s2lj

]
If there is a break between task i and its previous task, since that break should be taken at the depot, the

driver cannot take another break after departure from the depot and before task i. Analogously, if there is no
break between task j and its next task, the driver cannot take another break after departure from task j and
before arrival at the depot.
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4.3 Longer break blocks

According to the SH rules, the minimum rest time is 15 minutes. This is often too short for a proper rest. In
this section, we consider increasing the minimum break time. According to the Australian regulations, from
any period of continuous break time,only the largest multiple of 15 minutes less than or equal to the break
time is counted as a break. For example, 25 minutes break is counted as 15 minutes. So, one sensible way
to increase the minimum rest time is to increase the length of break blocks from 15 minutes to 30 minutes.
30-minute rests are common in the logistics industry and are reflected in rest break regulations for truck drivers
worldwide. In the US (Federal Register (2020)), the minimum rest break time in 30 minutes, and European
regulations (Europa 1 (2020); Europa 2 (2020)) require at least one 30-minute continuous rest break during
working hours of truck drivers.

Consider SH-type rule (330,1,30). Based on the rule, we need to have at least one 30-minute break block in
every 330 minutes. This rule dominates the three SH rules introduced before. In other words, if we have a tour
satisfying this rule, the SH rules are also satisfied. Consider tour (si, fi)[n]. Assume the length of the tour is
less than 13 hours or 780 minutes. We can prove the following theorem similar to the proof of Theorem 1.

Theorem 2. There exists an SH-feasible schedule of breaks if and only if for all i, j ∈ [n], i 6 j, we have:

1. if fj − si > 271, then
∑j−1

l=i bi > 1,

2. if fj − si > 601, then
∑j−1

l=i bi > 2.

Furthermore, this feasible schedule can be obtained by just scheduling bi break block(s) within flexible period
[fi, si+1] comprised of biδ break time and si+1− biδ− fi combined preemptive work time and idle time for every
i ∈ [n− 1].

Proof. Analogous to the proof of Theorem 1.

Theorem 2 introduces necessary and sufficient conditions for the rule (330,1,30). To model this new rule,
we need to modify set B to {30, 60}, and constraints 14, and 24.

Constraint 14 is replaced with

(xsj + sj + s2lj )− (xsi − s1li) 6 270 + 330y30ij + (tmax − 270)y60ij , for all (i, j) ∈ H, (29)

and constraint 24 with

(xsj + dj0(
∑

k:(j,k)∈A,
b∈B

xbjk) + sj + s2lj )− (xsi − d0i(
∑

i:(k,i)∈A,
b∈B

xbki)− s1li) 6 (30)

270 + 330y30ij + (tmax − 270)y60ij for all (i, j) ∈ H.

Corresponding to this rule, we define two new policies named Standard Hours with Longer break blocks
(SHL policy) and Standard Hours with breaks at Depot with Longer breaks (SHDL policy).

5 Computational Study and Discussion

In our computational studies, we used Gurobi 8.1 Optimiser on a 64-bit Windows 10 Machine with 16 GB of
RAM and Intel 4.8GHz i7-8665U processor. To compare policies, we generate 176 benchmark classes each
comprised of 7 instances. Each class corresponds to an actual tour that is run daily by a major postal company
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in Australia (data is related to the tours in Sydney Metropolitan and its regional areas). In each class, the
instances differ only in their time windows. For each tour, we have the tasks to be completed and the capacity
of the truck assigned to it. For each task, we have its duration, the scheduled start time, and the location. For
each pickup task, we know its associated delivery task.

We observe in our dataset that the deliveries are not tightly scheduled by the company. This is consistent
with the current practice and industry norms for regular postal service. Since most items in our database are
classified as non-express, we consider no specific delivery time for daily delivery tasks. Practically, the delivery
times are usually bounded by the maximum length of the tours which is 12 hours. Therefore, we only need to
generate time windows for pickup tasks.

In each class, we have 7 instances corresponding to O = {5, 20, 35, 50, 65, 95, 125}. Let tsi denote the
scheduled start time of pickup task i in instance o ∈ O. The time window for task i, i.e.

[
tei , t

l
i

]
, is equal

to [tsi − o, tsi + si + o]. All preparation times are set to zero. Service duration ranges from 5 minutes to 55
minutes with an average of approximately 12 minutes. Distance matrix (in minutes) is pulled from google
maps database. We use peak travel times on Tuesday, 24 September 2019, at 4:30PM as the tours were run on
that date.

Locations of all tasks are depicted in Figure 1. The size of each circle corresponds to the number of daily
visits to that location. The figure contains 240 locations across Sydney Metropolitan region. The top two
pickup locations (the two largest circles in the figure) comprise 37% of all visits, and the top two delivery
locations (the two largest circles in the figure) comprise 47% of all visits. These locations host the two major
sortation facilities for mail and parcels.

Most of the tours require trucks with capacities of 37 cubic meters (62 percent of the tours) and 58 cubic
meters (19 percent of the tours). The capacity requirement of a tour is an input to the model which can be
determined based on the road access restrictions and customer requirements.

In Table 3, we presented a typical tour as planned by the postal carrier. A 30-minute break is scheduled at
the depot. The tour has 12 tasks with the first task starting at 12:10 at the depot and the last task ending at
21:05 at the depot. This tour has to be executed from Monday to Friday every day.

Table 3: A typical tour time and duration (locations anonymised)

Transport Tour: 341
Monday to Friday 12:10-21:05

Arrive Location Instructions Depart

12:10 Depot Prepare a small truck 12:25
12:50 Customer 1 Collect All Available for Hub 1 13:05
14:10 Hub 1 Deliver All Available ex - Customer 1 14:20
15:05 Facility 1 Collect All Available for Hub 2 15:25
15:50 Hub 2 Deliver All Available ex - Facility 1 16:00

16:05 Depot Rest Break 16:35

17:40 Customer 2 Collect All Available for Customer 3 18:35
18:25 Customer 3 Deliver All Available ex - Customer 2

Collect All Available for Hub 2 18:35
19:20 Facility 2 Collect All Available for Hub 1, Hub 2 19:40
20:25 Hub 2 Deliver All Available ex - Facility 2, Customer 3 20:35
20:45 Hub 1 Deliver All Available ex - Facility 2 20:55
21:00 Depot Return and Refuel Vehicle 21:05
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Figure 1: Customer locations and their frequency of visits in Sydney

© Mapbox © OpenStreetMap

5.1 Analysis of tour duration

Tables 4 and 5 compare the optimal tour times of the SH policy and the SHD policy with the no break scheme.
The columns, from left to right, show instance classes O, mean difference, standard deviation, minimum
difference, first quantile, second quantile, third quantile, and maximum difference in minute (m) and percentage
(%). For each class o ∈ O, we only consider tours that have optimal solutions under all three policies. All
numbers in the tables are rounded down.

The second column shows the mean duration difference of optimal tours when compared to the no break
scheme. Let us refer to class o ∈ O as offset-o class. For offset 5 in Table 4, the mean difference is 3.2 which

Table 4: Difference in tour duration between the SH policy and the no break scheme

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 3.2 0.6 7.5 1.5 0 0 0 0 0 0 0 0 30 7
20 7.2 1.5 10.8 2.2 0 0 0 0 0 0 12 3 30 7
35 11.6 2.5 12.0 2.5 0 0 0 0 10 2 19 4 30 7
50 14.5 3.2 11.7 2.4 0 0 1 0 15 4 30 6 30 7
65 17.2 3.8 11.3 2.3 0 0 14 3 15 4 30 6 30 7
95 18.3 4.2 10.3 2.0 0 0 15 4 15 4 30 6 30 7

125 18.6 4.2 10.2 2.0 0 0 15 4 15 4 30 6 30 7
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means that the average duration of optimal tours under the SH policy is 3.2 minutes longer than the average
tour duration under the no break scheme. As the offset gets bigger, the difference converges to a value equal to
the average break time. This is because when the tasks can be scheduled freely, the problems of task sequencing
and break scheduling become two independent problems. In other words, we can first find an optimal sequence
of tasks and then schedule the breaks. When this happens, the difference between optimal scheduled tour
under the SH policy and optimal tour under the no break scheme for every instance will be equal to the total
break time.

There are two factors at play here. The first factor is the time window and the second is the break policy.
Bigger time windows allow for more flexible sequencing of tasks in each tour. Of course, requiring a break
limits this positive effect of wider time windows on the tour length. As time windows get larger, the mean
difference, unsurprisingly, converges to the minimum required break. An evidence of this would be the quantile
statistics with the majority being at 0, 15, and 30 minutes.

Table 4 also shows the average difference, in percentage, between the SH policy and the no break scheme.
As offsets get bigger the average difference increases slowly from 0.6% at offset 5 to 4.2% at offset 125. To
get a better sense of these numbers, let us work out another way of estimating the average difference. For
each optimal tour under the no break scheme, we calculate the minimum break time by applying Theorem
1 on the optimal tour duration. On average, the obtained minimum break is equal to 4.85% of the optimal
tour duration. That is, if optimal tours have no idle times that can be used for rest breaks, we expect that
the optimal tour lengths increase at least by 4.85% under the SH policy. However, the average idle times of
optimal tours under the no break scheme is 5%. Therefore, the increase could also be less than 4.85%. In Table
4, we observe that the mean differences, especially for bigger offsets, match 4.85%. In general, as offsets get
bigger, for each instance, the idle times approach zero for all policies and the difference between the SH policy
and the no break scheme approach the total break time.

In Table 4, the minimum difference in tour duration for all offsets in O is 0. This means that there are
instances that the optimal tour length under both policies are equal. The main characteristic of these instances
is that there exists at least one optimal tour under the no-break scheme that the required break times under
the SH policy can be scheduled during the idle times in the tour. Therefore, for those instance, there exists
an optimal tour under the no-break scheme that is also an optimal tour under the SH policy. The idle times
can exist in an optimal tour because of the time windows and because it is not always possible to schedule
back-to-back tasks with no slack time in between.

Under the SHD policy (Tables 5), the mean difference compared to the no break scheme is much larger
than what is reported in Table 4. This is pretty much expected since the drivers under the SHD policy have to
travel the extra miles to take rest at the depot. Perhaps the more interesting difference compared to the SH
policy is the standard deviation being almost twice as much for the SHD policy when compared to the SH
policy. The maximum difference also is much higher for the SHD policy compared to the SH policy.

To facilitate a better comparison between the two schemes, we provide a direct comparison between the
SHD policy and the SH policy in Table 6. Quantiles suggest that, in a majority of instances, both policies have
rather identical performance in terms of tour duration. This can be explained by the high frequency of visits
to two of strategically-located sortation facilities.One of these facilities is very close to the depot and the other
co-locates with the depot which makes it very convenient as they are visited frequently by many tours. The
depot is marked by a triangle in Figure 1. This way, taking a break at the depot becomes much less costly as
the drivers do not require travelling significant extra miles just for the purpose of a break. This justifies a
small different of only 1-1.5 percent between the average tour length of the SHD and that of the SH policies.
The gains may seem slim in the short term, but the overall benefits of the SH policy become more pronounced
in the long term.

The distribution of benefits across all tours is not uniform and there are extreme cases in which the extra
miles are significant (see the last two columns of Table 6). In those cases, the break needs to be scheduled at
different locations, not just at the depot. There are, therefore, tours that may benefit from scheduling the rest
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breaks in locations other than the depot. The benefits in these situations can be as large as 30% reduction in
tour length which is quite significant.

Under the SHD policy, tours have to travel extra miles on average compared to the SH policy. Extra miles
are not generally desirable as they prompt further uncertainties in travel times. This is a bigger issue in larger
cities like Sydney with very congested roads during peak ours. For parcel collection services, this is even more
pronounced when a large share of tasks is scheduled during the peak traffic hours (7:00 to 10:00 in the morning
and 4:00 to 7:00 in the afternoon, Liao et al. (2020)). In our dataset, around 21 % of all tasks are scheduled in
the peak hours. Any reduction in the frequency and length of the tours, especially in the most congested areas,
could reduce uncertainties in travel times for planning purposes, and contribute to improved city congestion as
a whole.

Table 5: Difference in tour duration between the SHD policy and the no break scheme

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 9.0 1.8 24.8 4.9 0 0 0 0 0 0 7 1 172 35
20 11.7 2.4 19.8 4.1 0 0 0 0 0 0 16 4 137 30
35 16.0 3.5 19.2 4.1 0 0 0 0 13 3 30 6 136 30
50 19.0 4.2 18.7 4.0 0 0 6 2 15 4 30 6 136 30
65 22.6 5.1 19.2 4.2 0 0 15 4 15 5 30 6 136 30
95 24.4 5.6 21.0 4.8 0 0 15 4 15 5 30 6 136 30

125 23.0 5.3 18.9 4.3 0 0 15 4 15 5 30 6 136 30

In Table 5, the minimum difference in tour duration for all offsets is 0 (similar to what we observed in Table
4). This means that there are instances that the optimal tour length under both policies are equal. The main
characteristic of those instances is that there exists at least one optimal tour under the no-break policy that
the required break times plus the travel times to and from the depot can be scheduled during idle times in
the tour. Therefore, for those instances, there exists an optimal tour under no-break scheme that is also an
optimal tour under SHD policy. Since the depot co-locates with one of the most frequently visited hubs by
many tours, there are more than a few instances with the mentioned characteristics.

Table 6: Difference in tour duration between the SHD policy and the SH policy

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 5.9 1.1 22.1 4.4 0 0 0 0 0 0 0 0 148 30
20 4.5 1.0 14.6 3.1 0 0 0 0 0 0 0 0 111 23
35 4.4 1.0 13.0 2.9 0 0 0 0 0 0 1 0 107 24
50 4.5 1.0 13.6 3.1 0 0 0 0 0 0 1 0 106 24
65 5.4 1.3 15.9 3.7 0 0 0 0 0 0 1 0 106 24
95 6.2 1.5 18.3 4.3 0 0 0 0 0 0 3 1 112 26

125 4.4 1.0 14.6 3.6 0 0 0 0 0 0 0 0 103 26

In our analysis, we compared two representative policies. One policy with no restriction on rest break
location, and the other policy with a restriction to only take a break at the depot. A policy with multiple
designated rest break locations cannot be more expensive than the SHD policy (in terms of tour duration), and
cannot be less expensive than the SH policy either. We thus studied the two extreme situations as representative
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scenarios. The developed framework for modelling these policies is highly flexible and can handle many rest
break scenarios. We considered three more scenarios in Remark 2, and Section 4.3.

5.2 Analysis of travel time

Heavy-duty trucks are one of the largest sources of emissions generation and energy use. Globally, greenhouse
emissions from heavy-duty vehicles are expected to surpass emissions from passenger vehicles by 2030 Federal
Register (2015). This suggests that from both environmental and efficiency perspectives, it is important to
understand the impact of scheduling/planning policies and practices on fuel consumption and greenhouse
emissions (Chen et al. (2020); Richardson (2005)).

To provide a comparison between the SH policy and the SHD policy in terms of fuel consumption and
emissions, we compare optimal total travel time of the optimised tours. To obtain optimal total travel times,
we use a hierarchical optimisation approach. We first optimise based on the tour length, and then optimise
based on the total travel time while fixing the tour length at the optimal value.

Table 7: Difference in minimum travel time between the SHD policy and the SH policy

offset mean min max posdiff(%) negdiff(%)

5 11.8 0 200 32 0.0
20 9.7 0 181 30 0.0
35 6.1 -22 181 29 1.4
50 6.9 -1 181 24 0.7
65 6.3 -4 181 22 1.5
95 5.8 -15 181 23 0.8

125 3.0 -1 103 18 0.9

Table 8: Average share of the minimum travel time in the optimal tour duration

offset meanSHD(%) meanSH(%) meandiff

5 54.5 53.0 1.5
20 57.4 56.0 1.4
35 58.0 57.2 0.8
50 58.9 58.0 0.9
65 59.0 58.3 0.7
95 58.9 58.4 0.5

125 59.2 59.0 0.2

The aggregate results are provided in Table 7. Columns mean, min, and max show the average, minimum,
and maximum difference (measured in minutes) between the minimum total travel time under the SH policy
from those of the SHD policy across tours. Columns posdiff and negdiff show the percentage of instances in
which the SHD policy and the SH policy, respectively, have bigger minimum travel times. As expected, the
SHD policy has larger minimum total travel time on average. However, the difference gets smaller as the offset
gets bigger or the time windows get wider. This is because of the extra flexibility afforded by the wider time
windows in scheduling and sequencing tasks that almost dominates the inflexibility introduced by taking the
break at the depot. In all instance groups corresponding to offsets, there are instances in which either the
SHD policy or the SH policy has greater minimum total travel time. On average, across offsets, in 0.75% of
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instances the SH policy requires more travel time than the SHD policy. This figure is 25% for the SHD policy,
meaning that the SHD policy, on average, requires more travel time in 25% of instances.

Table 8 shows the average share of the minimum travel time in the optimal tour duration for each offset
group. Columns meanSHD, meanSH, and meandiff show the average share under the SHD policy, the SH
policy, and the mean difference of the SHD policy from the SH policy. On average, the percentage of minimum
travel time in an optimal tour is 58% under the SHD policy and 57% under the SH policy. So, on average,
SHD policy compliant tours require slightly longer travel times. This is consistent across all instance groups,
but not across all instances - meaning that there are some instances in which the SH-optimal tours have longer
travel times. The difference between the two polices fades away as offsets get bigger.

It is somehow counter intuitive that there are instances, albeit rare, in which the SH-optimal tours have
larger total travel times than those of the SHD-optimal tours. One analogy is that under the SHD policy there
is at least one more location to visit for taking a break. This would have been true if the optimal sequence
under both policies were the same. Before elaborating further, we define idle time of a tour as the total time of
the tour that is neither a travel time, nor a service time. By this definition, the idle time of a tour includes the
break time. Therefore, the duration of a tour can be partitioned into three time portions: total travel time,
total idle time (including the break times), and total service time. The total service time for each tour is fixed
under both polices. The total travel time and total idle time can change. When the total travel time for the
SHD policy is less than the total travel time for the SH policy, the total idle time under the SH policy would
compensate for or exceed the difference in total travel times. Otherwise the optimal tour duration for the SH
policy would be bigger than that of the SHD policy. In most instances, the mandate to take a break at the
depot under the SHD policy forces the tours to either travel extra miles to/from the depot for taking the break,
or to take the break at times which might lead to extra waiting or idle times. Furthermore, the extra travel
times can lead to extra mandatory break times.

5.3 The impact of longer break blocks

In this section, we analyse the impact of longer break blocks for each policy. We compare the SHL policy with
the SH policy, the SHDL policy with the SHD policy, and the SHDL policy with the SHL policy.

Table 9: Difference in tour duration between the SHL policy and the SH policy

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 3.1 0.6 8.2 1.5 0 0 0 0 0 0 0 0 30 6
20 4.6 1.0 8.5 1.7 0 0 0 0 0 0 6 1 30 6
35 6.0 1.3 8.7 1.8 0 0 0 0 0 0 14 3 30 6
50 6.8 1.6 8.3 1.9 0 0 0 0 0 0 15 4 30 5
65 7.0 1.7 7.9 1.9 0 0 0 0 2 0 15 4 30 5
95 8.6 2.2 8.8 2.3 0 0 0 0 12 3 15 4 30 10

125 8.6 2.2 8.7 2.4 0 0 0 0 15 3 15 4 30 10

Table 9 presents the optimal tour duration comparison for the SHL and SH policies, and Table 10 compares
the SHDL policy with and the SHD. We observe that the difference between the two policies is larger, on
average, for the larger offsets. However, this trend does not hold across all instances. We know that optimal
tour duration under the SHL policy should be at least as much as that of the SH policy, and under thr SHDL
policy should be at least as much as that of the SHD policy. For instances that require a 15-minute break
in the optimal tour under the SH or SHD policies, they require at least 30 minutes break under the SHL or
SHDL policies, respectively. For instances that require a 30-minute break in the optimal tour under the SH or
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SHD policies, they require at least 30 minutes break under the SHL or SHDL policies, and so on and so forth.
As the offset gets larger, under the SH or SHD policies there are more opportunities for tour length reduction
for many reasons. Firstly, the mandatory total break is often less. Secondly, even when the mandatory total
break is the same, there is more flexibility under the SH or SHD policies in comparison with the SHL and
SHDL policies, because the break blocks are smaller.

For offsets above certain threshold at which the tasks can be scheduled freely, the difference between the
SHL and SH policies is fixed as they no longer impact the optimal sequence. In other words, finding the
optimal sequence becomes independent of the scheduling problem which includes the scheduling of breaks. The
same conclusion holds for the SHDL and SHD policies but with this twist that when the time windows are not
binding and tasks can move freely, the mandate to take a break at the depot might still affect the optimal
sequence. In this case, it is not obvious whether or not the break scheduling and sequencing problems are
independent of each other.

Table 10: Difference in tour duration between the SHDL policy and the SHD policy

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 8.0 1.5 14.2 2.7 0 0 0 0 0 0 8 2 60 11
20 11.1 2.2 14.5 2.7 0 0 0 0 2 0 20 4 89 15
35 16.0 3.3 27.5 5.3 0 0 0 0 13 3 22 4 257 50
50 15.4 3.3 25.9 5.2 0 0 0 0 15 3 15 4 260 51
65 17.2 3.9 29.9 6.7 0 0 0 0 15 4 17 5 245 56
95 20.1 4.6 30.3 6.6 0 0 0 0 15 4 30 5 229 47

125 21.0 4.8 34.2 7.6 0 0 0 0 15 4 30 5 229 45

Table 11: Difference in tour duration between the SHDL policy and the SHL policy

offset mean std min FQ SQ TQ max
min % min % min % min % min % min % min %

5 6.0 1.2 11.9 2.4 0 0 0 0 0 0 5 1 47 10
20 10.6 2.1 23.2 4.6 0 0 0 0 0 0 13 3 185 36
35 13.8 2.8 32.4 6.6 0 0 0 0 0 0 13 3 257 50
50 12.6 2.6 30.0 6.1 0 0 0 0 0 0 13 3 260 51
65 15.4 3.4 35.4 8.0 0 0 0 0 0 0 14 3 245 57
95 17.4 3.7 36.6 8.0 0 0 0 0 0 0 22 4 229 47

125 16.5 3.5 39.5 8.7 0 0 0 0 0 0 9 2 229 45

Table 11 shows the difference between the SHDL and SHL policies. The difference in this case is larger
than the difference between the SHD and SH polices. We conclude that the increase in the minimum break
duration intensifies the negative impact of enforcing break(s) at the depot on the optimal tour lengths. With
shorter minimum break times, it is easier to accommodate the depot break(s) in the tours while still meeting
the time windows without significantly changing the optimal sequence with no break.

Apart from the HOS regulations, there are other restrictions that may affect the scheduling of rest breaks. In
Australia, there are four sources of rules and regulations: legislation, awards, registered/enterprise agreements,
and employment contracts. These rules and regulations are issued and implemented at different levels in
terms of coverage and application. At the broadest level, the minimum work entitlements (including the
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HOS regulations) are legislated by the federal and/or state governments. These are commonly referred to
as legislation. Awards are legal documents that set the minimum standards and pays for specific industries
or occupations. Registered/enterprise agreements set out the minimum employment conditions for a specific
organisation or a group of organisations (i.e., agreement between the Fair Work Commission and an individual
organisation or a specific industry). Finally, the individual level of coverage is the employment contracts
through which certain work conditions may be applied to an individual or group of individuals. Our focus in this
paper was merely on addressing the HOS regulations enforced at the federal/state level since most enterprise
agreements are often defined under the umbrella of those broader federal regulations. However, studying the
interactions between the federal/state regulatory mandates and industry/corporate/individual agreements can
be intricate at times when multiple objectives need to be satisfied in a single scheduling/planning problem.
Investigation of these interactions, perhaps on a case-by-case or industry-by-industry basis, is an important
and interesting direction for future research in this area.

6 Conclusion

This paper presented a MIP-based framework for modelling a class of rest break policies for truck drivers.
We model and compare two representative policies from this class named SH and SHD policies. In the SH
policy, all breaks are scheduled according to the standard hours regulations. In the SHD policy, the breaks are
still scheduled according to the standard hours regulations with an extra constraint that enforces the breaks
to be only taken at the depot. Logically, the SHD policy should be more expensive in terms of tour length
due to more restrictive rest break location. However, we observe in a real case study from postal services in
Australia that the magnitude of benefits that can be obtained from the SH policy is not as large as one would
expect. Our computational analysis suggests that the SHD policy, on average, is between 1 to 1.5 percent more
expensive than the SH policy. The reason is that most of the tours in the concerned service area (Sydney
metropolitan) occur in the vicinity of the depot (where the rest breaks occur in the SHD policy); hence, the
extra miles that need to be travelled to return to the depot to take a break may not be as significant. This
finding reinforces the important role that facility location (depot location in this case) plays in policy impact
analysis. This level of analysis is crucial when making supply chain network design decisions as the outcomes
not only impacts the internal scheduling decisions, but they also contribute to the pick-time traffic congestion
in a broader perspective.

The framework is developed taking into consideration the necessary and sufficient conditions pertaining
to the application of the SH rules for short daily work hours. These conditions allows us to not explicitly
schedule breaks to find the optimal tour length. They also enable us to model rest break requirements without
losing the tractability using the existing MIP solvers. However, with these conditions we imply that we are not
seeking an exact solution to the break schedule problem. This makes sense for the purpose of our analysis
because having an exact schedule of breaks is not a requirement for finding an optimal tour.

The proposed framework was intended to be simple to use by business analysts with basic knowledge of
MIP modelling. The rapidly changing business environment of today necessitates frequent changes/updates
in analytical models and/or the development of new models. MIP models are versatile and can handle new
requirements relatively easily. In many situations, the powerful MIP solvers, commercial or open source, can
solve standard industrial-sized problems, rendering the need for the customised advanced algorithms defunct.
Developing advanced solution algorithms is time-consuming, demands high technical knowledge (hence not
practical in real world), and requires ongoing maintenance; thus, they should be avoided if unnecessary.

There are multiple directions through which this research can be extended. One direction is to extend
our framework and analysis to compare policies using other measures such as the number of vehicles in a
multi-vehicle scenario (note that our intention in this paper was to compare the rest break policies for a single
vehicle/driver to avoid service interruption/inconsistency due to changes in the set of tasks in each tour).
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Another interesting direction for future research is to develop algorithms to find an exact schedule of breaks in
an optimal tour under the SH policy with unrestricted rest break location. Given that our approach gives the
duration of the rest break between tasks, finding an exact schedule of breaks should be plausible. Extension of
the developed models to accommodate longer work hours which is essential for intercity planning is another
future research avenue.

Acknowledgments

This research was funded by iMOVE CRC, a research funding initiative under the Australian Government’s
Cooperative Research Centres (CRC) program (Grant ID: 199789). The authors are thankful to the University
of Sydney Business School and the industry partner for partial funding of this project as part of the iMOVE
CRC funding scheme. The authors are also grateful to Thomas Kalinowski for his insightful comments to
develop and improve the theorems.

References

Archetti, C. and M. Savelsbergh (2009, November). The Trip Scheduling Problem. Transportation Science 43 (4),
417–431.

Briest, P., J. Dragendorf, T. Ecker, D. Mohr, and F. Neuhaus (2019). The Endgame for Postal Networks: How
to Win in the Age of e-Commerce. McKinsey & Company.

Ceselli, A., G. Righini, and M. Salani (2009, February). A Column Generation Algorithm for a Rich Vehicle-
Routing Problem. Transportation Science 43 (1), 56–69.

Chen, F., Z. Yin, Y. Ye, and D. Sun (2020, October). Taxi hailing choice behavior and economic benefit
analysis of emission reduction based on multi-mode travel big data. Transport Policy 97, 73–84.

Dong, B., M. Christiansen, K. Fagerholt, and S. Chandra (2020, November). Design of a sustainable maritime
multi-modal distribution network – Case study from automotive logistics. Transportation Research Part E:
Logistics and Transportation Review 143, 102086. 00003.

Dumas, Y., J. Desrosiers, and F. Soumis (1991, September). The pickup and delivery problem with time
windows. European Journal of Operational Research 54 (1), 7–22.

Europa 1 (accessed on July 30,2020). Human resources:Transport sector workers:Road transportation
workers. https://europa.eu/youreurope/business/human-resources/transport-sector-workers/

road-transportation-workers/index_en.htm.

Europa 2 (accessed on July 30,2020). Regulation (EC) No 561/2006 of the European Parliament and of
the Council of 15 March 2006. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:

32006R0561:EN:HTML#d1e817-1-1.

Fahimnia, B., M. Bell GH, D. Hensher A, and J. Sarkis (2015). Green Logistics & Transportation: A Sustainable
Supply Chain Perspective. Springer.

Federal Register (2015, July). Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and
Heavy-Duty Engines and Vehicles— Phase 2. https://www.govinfo.gov/content/pkg/FR-2015-07-13/
pdf/2015-15500.pdf.

23

https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers/index_en.htm
https://europa.eu/youreurope/business/human-resources/transport-sector-workers/road-transportation-workers/index_en.htm
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R0561:EN:HTML#d1e817-1-1
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32006R0561:EN:HTML#d1e817-1-1
https://www.govinfo.gov/content/pkg/FR-2015-07-13/pdf/2015-15500.pdf
https://www.govinfo.gov/content/pkg/FR-2015-07-13/pdf/2015-15500.pdf


Federal Register (2020, January). Hours of Service of Drivers. https://www.federalregister.gov/

documents/2020/06/01/2020-11469/hours-of-service-of-drivers.

Goel, A. (2009, February). Vehicle Scheduling and Routing with Drivers’ Working Hours. Transportation
Science 43 (1), 17–26.

Goel, A. (2010, November). Truck Driver Scheduling in the European Union. Transportation Science 44 (4),
429–441.

Goel, A. (2012a, December). The minimum duration truck driver scheduling problem. EURO Journal on
Transportation and Logistics 1 (4), 285–306.

Goel, A. (2012b, August). A mixed integer programming formulation and effective cuts for minimising schedule
durations of Australian truck drivers. Journal of Scheduling .

Goel, A. (2014, May). Hours of service regulations in the United States and the 2013 rule change. Transport
Policy 33, 48–55.

Goel, A., C. Archetti, and M. Savelsbergh (2012, May). Truck driver scheduling in Australia. Computers &
Operations Research 39 (5), 1122–1132.

Goel, A. and S. Irnich (2017, May). An Exact Method for Vehicle Routing and Truck Driver Scheduling
Problems. Transportation Science 51 (2), 737–754.

Goel, A. and L.-M. Rousseau (2012, December). Truck driver scheduling in Canada. Journal of Scheduling 15 (6),
783–799.

Goel, A. and T. Vidal (2014, August). Hours of Service Regulations in Road Freight Transport: An Optimization-
Based International Assessment. Transportation Science 48 (3), 391–412.

Justice Laws (accessed on July 30,2020). Commercial Vehicle Drivers Hours of Service Regulations. https:
//laws-lois.justice.gc.ca/eng/regulations/SOR-2005-313/.
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Appendix A: Proof of Theorem 1

Proof of Theorem 1

The necessity of conditions immediately follows from Lemma 1.
We prove the sufficiency by showing we can find a feasible solution by just shifting break blocks around inside

their associated flexible interval . Consider intervals of the form [t, t+ak−1] where a1 = 330, a2 = 480, a3 = 660
corresponding to three break rules (330, 1, 15), (480, 2, 15), and (660, 4, 15). Assume interval [t, t+ ak− 1] where
k ∈ [3] is an infeasible interval with the earliest finish time. If there are multiple intervals with earliest finish time,
it is the smallest one. We consider all cases for [t, t+ak−1] and show that they all can be made feasible without
affecting the feasibility of the intervals with earlier finish time or with the same finish time but smaller length.
Both ends of the interval can be either within a flexible interval or inflexible interval . If one end is in flexible
interval , it can either be within a break or outside of a break in the current schedule. So, there are 9 possibilities
for the ends of the interval (i.e., 3× 3) and there are 3 rules, which leads to 27 cases. To make the exposition
easier, we denote a case by xy−k. x denotes where the start of the interval is located in time. If the start is in an
inflexible interval , x = U , for a flexible interval and break x = B, and for a flexible interval and non-break x = N .
Parameter k indicates the type of the rule. For example, UB − 1 denotes the case that interval corresponds to
rule 1, the start of the interval, i.e. t, is in an inflexible interval , and the end of the interval,i.e. t+ a1− 1, is in
a break. Without loss of generality, we assume the infinite intervals (−∞, s1) and (fn,∞) are all break intervals.

UU-1, UN-1, UB-1, NU-1, NN-1, NB-1: If [t, t+ 329] is infeasible, [t− 1, t+ 328] is also infeasible and
this is a contradiction to interval [t, t+ 329] being the infeasible interval with the earliest finish time.

BU-1: There should be a break ending at t + 13 otherwise interval [t − 1, t + 328] is infeasible which is a
contradiction. We consider two cases for the break block:
Case 1 : it can move one minute to the right.
In this case, we can make the interval feasible by moving the break block one minute to the right because it is
not blocked by an inflexible interval but it might make another interval finishing earlier than t+ 329 infeasible.
We just need to consider the intervals ending at t+ 13 because all the other relevant intervals are not affected
adversely by moving break block [t− 1, t+ 13] one to the right. There are three possible cases. Either interval
[t− 316, t+ 13] of length 330 or interval [t− 466, t+ 13] of length 480 or interval [t− 646, t+ 13] of length 660
becomes infeasible.
Case 1-1 : Interval [t− 316, t+ 13] becomes infeasible
In this case, interval [t− 316, t+ 328] is longer than 480, so by the assumption that interval [t, t+ 329] is the
earliest finishing infeasible interval and there is no break block in [t, t+ 329], there should be at least two break
blocks inside [t− 316, t+ 13]. This is a contradiction as moving break [t− 1, t+ 13] on minute to the right, still
leaves one full break block inside interval [t− 316, t+ 13].
Case 1-2 : [t− 466, t+ 13] becomes infeasible
In this case, the interval [t− 466, t+ 328] is longer than 660. So there should be at least 4 break blocks inside
[t− 466, t+ 13]. Analogously to the previous case, this is a contradiction.
Case 1-3 : [t− 646, t+ 13] becomes infeasible
In this case, since the length of the tour is less than or equal to 780, the start of the tour cannot be earlier
than t+ 329− 780 = t− 449. So there are at least 4 break blocks in [t− 645, t− 451]. This is a contradiction
to shifting break block [t− 1, t+ 13] one to the right making interval [t− 646, t+ 13] infeasible.
Case 2 : It cannot move one to the right.
It follows that there is an inflexible interval starting at t+ 14. Let t′ be the end of the rightmost inflexible
interval overlapping t + 329. Let |[a, b]| denote the the length of interval [a, b], that is, b − a + 1. We have
|[t+ 14, t′]| > 301. Therefore by the first condition, there should be at least one break block in [t+ 14, t′]. It
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implies that there should be a break block inside [t, t+ 329]. This is a contradiction.

BN-1: The break block overlapping t should end at t+ 13 otherwise interval [t− 1, t+ 328] is infeasible which
is a contradiction. We consider two cases.
Case 1 : We can move the break block one to the right.
We need to show that moving the break block one to the right will not make any interval finishing earlier
that=n t+ 329 infeasible. Any earlier finishing interval which contain interval [t− 1, t+ 14] will not be affected
by this move. Therefore, we just need to consider intervals ending at t+ 13. We consider 330, 480, and 660
minute intervals finishing at t+ 13.
Case 1-1 : interval [t− 316, t+ 13]
Interval [t− 316, t+ 328] is longer than 480 and by the feasibility assumption of earlier starting intervals, it
should contain at least two break blocks. Since there is no break block in [t+ 14, t+ 329], the two break blocks
should be in [t − 316, t + 13] and moving the rightmost break block one to the right cannot make interval
[t− 316, t+ 13] infeasible. This is a contradiction.
Case 1-2 : interval [t− 466, t+ 13]
Interval [t− 466, t+ 328] is longer than 660 and by the assumption it should contain at least four break blocks.
Since there is no break block in [t + 14, t + 329], the four break blocks should be in [t − 466, t + 13] and
moving the rightmost break block one to the right cannot make interval [t− 466, t+ 13] infeasible. This is a
contradiction.
Case 1-3 : interval [t− 646, t+ 13]
Interval [t− 646, t+ 329] is longer than 780. Therefore, at the worst case, the tour length is 780, it ends at
t+ 330 and starts at t− 449. So, there are at least four break blocks in [t− 646, t− 450] and moving break
block [t− 1, t+ 13] one to the right does not make interval [t− 646, t+ 13] infeasible.
Case 2 : We cannot move the break block one to the right.
This means interval [t+ 14, t+ 329] doe not have a break block and t+ 14 is the start of an inflexible interval .
Since t+ 329 is in a flexible interval there should be an inflexible interval after. Let t′ ≥ t+ 329 denotes the
end of the closest such inflexible interval to t+ 329. It follows that |[t+ 14, t′]| > 301. Therefore by the first
condition, it should have a break block. Since interval [t, t+ 329] does not have a break block, there should be
a break block in [t+ 330, t′]. We shift that break block to the leftmost position. If it completely lies inside
[t, t+ 329] we are done. Otherwise, it means that there is an inflexible interval ending in [t+ 315, t+ 329]. At
worst, it ends at t+ 315. Then we have

|[t, t+ 315]| ≥ 301

It implies that there should be a break block inside [t, t+ 315] by the first condition. This is a contradiction.
BB-1: The analysis is analogous to case BN-1. We just need to argue for the case that the left break block
cannot move one to the right. At the worst case, the right break block overlapping t+ 329 starts at [t+ 316]
and it cannot be shifted one to the left due to an inflexible interval ending at t+ 315 and there is an inflexible
interval starting at t+ 14. It follows that

|[t+ 14, t+ 315]| ≥ 301

By the first condition, there should be a break block in [t+ 14, t+ 315]. This is a contradiction.
UB-2, UN-2, UU-2, NB-2, NN-2, NU-2:
If [t, t+ 479] is infeasible then [t− 1, t+ 478] is also infeasible and this is a contradiction.

BU-2: If we move the interval [t, t + 479] one to the left, it should contain at least two break blocks with
the left break block [t− 1, t+ 13] otherwise it is a contradiction. There are two possible cases: either we can
move the break block one minute to the right or not. In the former case, we can make the interval feasible
by moving it one to the right but it might make another interval ending at t+ 13 infeasible. There are three
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possible cases: either the interval [t − 316, t+ 13] of length 330 or interval [t − 466, t+ 13] of length 480 or
interval [t− 646, t+ 13] of length 660 becomes infeasible. In the first case, interval [t− 316, t+ 479] is longer
than 660, so, there should be at least three break blocks inside [t− 316, t+ 13]. This is a contradiction. In the
second case, the interval [t− 466, t+ 479] is longer than 780. So, the start of the tour, i.e., s1, cannot be earlier
than t+ 479− 780 + 1 = t− 300. Interval [t− 466, t− 301] is entirely a break period thereby containing at
least 2 break blocks which is a contradiction with [t− 466, t+ 13] getting infeasible after moving break block
[t− 1, t+ 13] one to the right. We can use a similar argument for the interval [t− 646, t+ 13]. So, we skip it.
In the latter case, since there is one break block inside [t+ 14, t+ 479], at the worst case, we have a situation
in which, there is an inflexible interval starting at t+ 29. It implies that interval [t+ 29, t+ 479] is infeasible.
This is a contradiction since the length of this interval is equal to 451 and it should have at least 2 break blocks
according to the second condition.

BB-2:
There should be one break block inside [t, t + 479] and one break block overlapping t and ending at t + 13
otherwise interval [t − 1, t + 478] is infeasible and as a result we have a contradiction. Consider the break
block overlapping t+ 479. If it can be pushed fully inside [t, t+ 479], then we are done; because then we have
two break blocks inside [t, t+ 479] and the interval becomes feasible. Otherwise, there should be an inflexible
interval ending at t′′ ≥ 450. In case that t′′ ∈ [451, 463], the only break block inside [t, t+ 479] should be the
break block [t′′ + 1, t′′ + 15] which is preventing the rightmost break block overlapping t+ 479 fully pushed
inside. We consider two cases for the leftmost break block [t− 1, t+ 13]
Case 1 : it can move one to the right
The argument is similar to case 1 for case BN-1.
Case 2 : it cannot move one to the right
Let t′ and t′′ be the start of leftmost inflexible interval and the end of the rightmost inflexible interval in
[t, t + 479] respectively. Either there is an inflexible interval starting at t + 14 or there is the break block
[t + 14, t + 28] and an inflexible interval starting at t + 29. Therefore, t′ 6 t + 29. It follows from this and
t′′ > 450 that |[t′, t′′]| > 301. Therefore, based on the first condition, there is at least one break block in [t′, t′′].
If there is another break block outside of [t′, t′′] but inside of [t, t+ 479], we are done with having a feasible
solution. Otherwise, |[t′′ + 1, t+ 479]|+ |[t, t′ − 1]| 6 28 and |[t′, t′′]| > 452. Following the second condition,
there should be at least two break block in [t′, t′′] and thereby in [t, t+ 479]. This is a contradiction.
BN-2:
The argument is similar to the argument for case BB-2.

UU-3,UB-3,UN-3,NU-3,NN-3,NB-3:
If [t, t+ 659] is infeasible then [t− 1, t+ 658] is also infeasible and this is a contradiction.

BU-3:
There should be three break blocks inside [t, t+ 659] and the left break block overlapping t should start at
t− 1 otherwise interval [t− 1, t+ 658] is infeasible and as a result we have a contradiction. We consider two
cases for the left break block
Case 1 : it can move one to the right
In this case, one of the intervals with lengths 330, 480, or 660 ending at t+ 13, that is, one of the intervals
[t − ak + 14, t + 13] for k ∈ [3] might become infeasible. In all cases, interval [t − ak + 14, t + 659] is longer
than 780. So, at the worst case, the tour starts no earlier than t − 120. As per our assumption that the
intervals before and after the tour are entirely breaks, there are at least 5 break blocks in all k ∈ [3] intervals
[t− ak + 14, t− 120]. As a result, there are at least 5 break blocks inside all k ∈ [3] intervals [t− ak + 14, t+ 13].
This is a contradiction and moving one break block outside of the three intervals ending at t+ 13 does not
make the infeasible.
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Case 2 : it cannot move one to the right
We consider three cases:
Case 2-1 : There is an inflexible interval starting at t+ 14. Let t′ be the end of the rightmost inflexible interval
overlapping t+ 659. So |[t+ 14, t′]| > 631. It follows from the fourth condition that we have four break blocks
inside [t+ 14, t′] thereby four break blocks inside [t, t+ 659]. This is a contradiction.
Case 2-2 : There is an inflexible interval starting at t + 29 and one break block from t + 14 to t + 28. So
|[t+ 29, t′]| > 631. It follows from the fourth condition that we have four break blocks inside [t+ 29, t′] and
thereby four break blocks inside [t, t+ 659]. This is a contradiction.
Case 2-3 : There is an inflexible interval starting at t + 44 and two break blocks from t + 14 to t + 43 So
|[t+ 44, t+ 659]| > 480. It follows from the second condition that we have two breaks inside [t+ 44, t+ 659]
and thereby four break blocks inside [t, t+ 659]. This is a contradiction.
Case 2-4 : There is an inflexible interval starting at t+ 59 and three break blocks from t+ 14 to t+ 58, So
|[t+ 59, t+ 659]| > 301. It follows from the first condition that we have one break block inside [t+ 59, t+ 659]
and thereby four break blocks inside [t, t+ 659]. This is a contradiction.

BB-3:
There should be three break blocks inside [t, t+ 659] and one break block overlapping t and starting at t− 1.
Otherwise interval [t− 1, t+ 659] is infeasible and as a result we have a contradiction. We assume the right
break block overlapping t+ 659 cannot be shifted to the left so that it completely is inside interval [t, t+ 659].
We consider two cases for the left break block:
Case 1 : it can move one to the right
Analogous to Case 1 for BU-3.
Case 2 : it cannot move one to the right
According to the assumption, there are three break blocks inside [t+ 14, t+ 659]. Let t′ denote the start of
leftmost inflexible interval and t′′ the end of the rightmost inflexible interval inside [t, t+ 659]. Since neither the
leftmost nor the rightmost break block can be pushed inside, we have multiple cases depending on how these
three blocks are distributed among intervals [t, t′−1], [t′, t′′], and [t′′+1, 659]. We consider four cases depending
on how many break blocks are inside [t′, t′′] starting from 3 down to 0. In the first case, |[t, t′−1]|+ |[t′′+1, 659]|
cannot be bigger than 2(δ − 1) = 28 because both intervals [t, t′ − 1] and [t′′ + 1, 659] are all break given the
rightmost break overlapping t+ 659 fully pushed to the left. Therefore, |[t′, t′′]| > 632. Following the fourth
condition, there should be four break blocks inside [t′, t′′] thereby having four break blocks in the interval
[t, t + 659] leading to a contradiction. In the second case in which we have two break blocks inside [t′, t′′]
and one break block either in [t, t′ − 1] or in [t′′ + 1, 659], so |[t, t′ − 1]|+ |[t′′ + 1, 659]| cannot be bigger than
2(δ − 1) + δ = 43. Therefore, |[t′, t′′]| > 616. This and the third condition lead to a contradiction again. Other
cases are analogous. So we skip them.

BN-3:
There should be three break blocks inside [t, t+ 659] and one break block overlapping t and starting at t− 1.
Otherwise interval [t− 1, t+ 659] is infeasible and as a result we have a contradiction.

If there is a break block inside the flexible interval overlapping t+ 659 which can be pushed partially to the
left inside interval [t, t+ 659] then this case will turn into case BB − 3. Otherwise, there is no break block
to the right of [t, t+ 659] and inside the flexible interval overlapping t+ 659. We consider two cases for the
leftmost break block overlapping t:
Case 1 : it can move one to the right
Analogous to Case 1 for BU-3.
Case 2 : it cannot move one to the right
According to the assumption, there are three break blocks inside [t + 14, t + 659]. Let t′ denote the start
of leftmost inflexible interval and t′′ the end of the leftmost inflexible interval outside [t, t+ 659]. Since the
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leftmost break block cannot be pushed fully inside, we have four cases depending on how these three blocks are
distributed between intervals [t, t′ − 1], [t′, 659]. We start from 3 going down to 0. In the first case, t′ = t+ 14
and thereby |t′, t′′| > 631. Following the fourth condition, there should be four break blocks inside [t′, t′′] and
thereby one break block inside [t+ 659, t′′], this is a contradiction to assuming there is no break block inside
the inflexible interval overlapping t+ 659. In the second case, t′ = t+ 29 and thereby |t′, t′′| > 616. Following
the third condition, we have three break blocks inside [t′, t′′] and thereby one break block inside [t+ 659, t′′].
This is a contradiction again. The argument for the other cases is analogous.
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